Neptune's Progress on the West Valley Probabilistic Performance Assessment (PPA)

Paul Black, Kelly Crowell, Amy Jordan, Robert Lee, Dan Levitt, Lisa Mathai, Ralph Perona, Mike Sully, and John Tauxe

- Process for PPA Development
- Features, Events, Processes, and Scenarios (FEPS)
- Conceptual Site Model (CSM) Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Process for PPA Development

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

What are FEPS?

Performance Assessment starts with identification of Features, Events, Processes, and exposure Scenarios:

- natural and engineered *features* of the environment
- events that would influence contaminant transport
- natural processes that move contaminants from source locations (contaminant transport mechanisms)
- scenarios of human activities that would result in exposure to radionuclides and hazardous chemicals

The FEPS Analysis Process

• FEPS identification:

An initial list of more than 1300 FEPS comes from a review of previous PAs, plus site-specific considerations.

• *Remove duplication:*

The initial list is reduced to about 600 after combining duplicate and similarly-worded FEPS.

FEPS screening:

After screening out FEPS that do not apply to West Valley Site, about 430 FEPS are retained for consideration in the Conceptual Site Model (CSM).

Some FEPS will require further evaluation.

Natural and Engineered Features

- location and inventory of disposed waste and residual contamination
- waste form and containerization
- engineered barriers
- properties of porous media (soils, sediments and rocks that water flows through)
- surface water features (seeps, creeks, etc.)
- trees, grasses, and other plants
- burrowing animals

Events

- natural events such as large storms
- erosion events, such as:
 - landslides
 - slumps
 - gully formation
- excavation into waste or contaminated areas
- loss of institutional control, followed by site occupation and development

Natural Processes

- radioactive decay and ingrowth
- groundwater and surface water processes: water and sediment contaminant transport
- diffusion of contaminants in pore air and water and dispersion into the atmosphere
- location and type of erosion processes
- redistribution of contaminants to the ground surface by plant uptake and burrowing animals
- effects of long-term climate change

Exposure Scenarios

- human activities typical of the region, such as constructing and living in a dwelling, farming, hunting, fishing, and hiking
- other activities found in the region, such as
 - quarrying
 - drilling for petroleum products
 - drilling for water
- cultural uses of the environment by Native Americans (e.g. Seneca Nation of Indians)
- large scale water intakes downstream

Process for PPA Development

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

X

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Contaminated Facilities

Contaminated facilities to be modeled includes:

- Phase 1 residual contamination (following cleanup)
 - Residual contamination is included as separate source areas in each Waste Management Area (WMA) since these still contribute to risks.
- Facilities remaining after completion of Phase 1 Decommissioning
 - Waste Tank Farm, NDA, SDA, non-source area of the North Plateau Plume, contaminated soil and sediment

NDA – (United States) Nuclear Regulatory Commission-licensed Disposal Area SDA – (New York) State-licensed Disposal Area

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Potential Erosion Pathways

A source area may have multiple surface water flow paths described by:

- distance
 between waste
 and the top of
 the stream
 valley (path
 length)
- rates of erosion

Example: Northern SDA Trenches

2015 orthoimage courtesy NYSERDA

Example: Northern SDA Trenches

2015 LiDAR topography courtesy NYSERDA

Example: Northern SDA Trenches

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Surface Water and Sediment

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Groundwater Modeling

Groundwater Modeling

Groundwater modeling of the site will use a detailed grid, similar to this one, but with more detail in order to capture the effects of engineered control alternatives.

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Future Climate State

 Intergovernmental Panel on Climate Change (IPCC): Start of a glacial period is not expected in the next 50,000 years.

This conclusion is strongly supported by climate modeling studies using Earth System Models. These models indicate:

- the transition to glacial conditions is not possible while atmospheric CO₂ (carbon dioxide) concentrations are > 300 ppm (they are currently > 400 ppm)
- CO₂ remains in the atmosphere for a long time, and
- a return to pre-industrial CO₂ concentrations (280 ppm) may take hundreds of thousands of years.

The most likely future climate at the WNYNSC is **a continuation of the current interglacial climate** under conditions of variable but progressive global warming.

What Does a Warming Interglacial Climate Mean?

Current site meteorological conditions are *not representative* of future climate patterns, since warming is expected.

Global warming is likely to increase atmospheric moisture and increase storm frequency and intensity.

- Slower moving, more intense storms from jet-stream modifications
- Consequences of changes in the strength and stability of the circulation in the Atlantic Ocean

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

Human Exposure Scenarios

Example Scenario: Farmer exposed to radiation or chemical contamination

Exposure Scenarios

- Human and ecological (animals and plants) exposures will be evaluated.
- Examples for people include farming (including living on the site), recreational (e.g., fishing, hunting, hiking), etc.
- Ecological exposure scenarios include terrestrial and aquatic organisms.

Exposure Pathways

As an example, exposure pathways for farming include:

- Ingestion of
 - incidental soil, sediment, and dust
 - groundwater
 - fruits and vegetables (produce or wild plants)
 - animal products: milk, poultry, and eggs
- Inhalation of
 - radioactive and volatile chemical gases
 - suspended dust
- Skin absorption from soils, surface waters, and sediment
- External exposure from soils and sediment

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

PPA Model Development

We are in the initial stage of model development.

The PPA is built using the GoldSim system modeling platform (under Windows). Player versions of GoldSim are available, so anyone can explore and run the model.

www.goldsim.com

Basic Structure

We have begun adding information for:

- modeled Species
- definition and properties of Water, Air, and several Solid media

Inventory Development by WMA

GoldSim Pro - West Valley PPA Model v0.001.gsm*	<u></u>		×
Eile Edit View Graphics Model Run Help			
□ ☞ 🖬 👗 🖻 🛍 🖪 陰 📽 😏 🗊 🛤 🔽 🗃 % 🤫 DB 💡 [┣ Ѻ Ҽ 🖾 🤭 匹 屯 屯 ≛ 🗁 ≛ 🖂 🕬		1	
E 1 ♦ ♦ Container Path: Transport\WMA8			2 🔍
			<u>ົ</u> " ເ
Map of SDA Trenches and containers for contaminant transport calculations			4
Trench and creek locations are approximate	145		L L
	-		0
trench			0
TRENCH 14			A
TRENCH 13	I UIIIe		
		5 D	
TRENCH 11 TRENCH 5			
TRENCH 10		•	興
TRENCH 8	No.		OK.
			120
Emplie Creak			
<		>	
Edit Mode: Press F5 to run model. Scale: 100% Filter	ON	Edit M	ode:

West Valley Quarterly Public Meeting • November 2016

(),

Radionuclide Species

Master Species Properties : Species

×

Help

Defini	tion								
Elem	nent ID:	Specie	es		Appearance				
Des	cription:	Radior	nuclides inclu	ded in the modeling	a				
Spe	cify decay:	Half-liv	/es	~	Species	s set	order	ring: Weight, ascending ~	
Dien	lav:								
ызр	Min half-life to show: U yr								
Auto-include ICRP daughters with half-lives >= 5 yr and <= 1.5e+015 yr									
Species List									
- Op				Number of Mode	eled Species : 7	2			
	Include	Row #	ID	Weight	Half-Life	1	R	Modeled daughters (skipped intermediates)	
	\boxtimes	1	H-3	3.01605 g/mol	12.32 yr		\boxtimes	(He)	
	$\overline{\boxtimes}$	2	C-14	14.0032 g/mol	5700 yr	\square	$\overline{\boxtimes}$	(N)	
	\boxtimes	3	Co-60	59.9338 g/mol	5.2713 yr	\square	\boxtimes	(Ni)	
		4	Ni-63	62.9297 g/mol	100.1 yr	\square	\square	(Cu)	
		5	Se-79	78.9185 g/mol	2.95e+005 yr	\square	\square	(Br)	
		6	Sr-90	89.9077 g/mol	28.79 yr	\boxtimes	\square	(Zr, Y-90)	
	$\overline{\boxtimes}$	7	Tc-99	98.9063 g/mol	2.111e+005 yr	\square	$\overline{\square}$	(Ru)	
	$\overline{\boxtimes}$	8	Cd-113m	112.904 g/mol	14.1 yr	$\overline{\boxtimes}$	$\overline{\boxtimes}$	(In, Cd-113)	
	$\overline{\boxtimes}$	9	Sn-121m	120.904 g/mol	43.9 yr	$\overline{\square}$	$\overline{\square}$	(Sb, Sn-121)	
	Ā	10	Sb-125	124.905 g/mol	2.7586 yr	$\overline{\square}$	$\overline{\boxtimes}$	(Te, Te-125m)	
	$\overline{\boxtimes}$	11	Sn-126	125.908 g/mol	2.3e+005 yr		$\overline{\boxtimes}$	(Te, Sb-126, Sb-126m)	
	$\overline{\boxtimes}$	12	I-129	128.905 g/mol	1.57e+007 yr	$\overline{\square}$	$\overline{\square}$	(Xe)	
		13	Cs-137	136.907 g/mol	30.167 yr	\square	$\overline{\boxtimes}$	(Ba, Ba-137m)	
		14	Pm-147	146.915 g/mol	2.6234 yr		\square	Sm-147	
		15	Sm-147	146.915 a/mol	1.06e+011 vr			(Nd)	
<	2								
	Add	Del	ete Eo	dit Export.	Import			Ĵ Row	
								Close	

We include every radionuclide mentioned in all inventory information, plus decay products. These are screened for inclusion in the contaminant transport models, but all are included in the dose assessment.

Fine-Scale Inventory Control

The model user can include or exclude specific WMAs.

Example:

SDA trenches, or even 15-m (50-ft) sections that are considered for excavation and removal.

- Process for PPA Development
- The FEPS Process
- CSM Overview
 - Contaminated Facilities
 - Erosion
 - Surface Water
 - Groundwater
 - Climate Change
 - Human Exposure
- GoldSim Model Development

